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Abstract This chapter presents a stochastic unit commitment model for power sys-
tems and revisits parallel decomposition algorithms for these types of models. The
model is a two-stage stochastic programming problem with first-stage binary vari-
ables and second-stage mixed-binary variables. The here-and-now decision is to
find day-ahead schedules for slow thermal power generators. The wait-and-see de-
cision consists of dispatching power and scheduling fast-start generators. We dis-
cuss advantages and limitations of different decomposition methods and provide
an overview of available software packages. A large-scale numerical example is
presented using a modified IEEE 118-bus system with uncertain wind power gener-
ation.

1 Stochastic Unit Commitment Model

Unit commitment (UC) is a decision-making process that schedules power genera-
tion units and production levels over a planning horizon. This process is central to
ensuring efficiency and reliability of the power system operation. While fossil-fuel
power plants produce 67% of the total electricity generation in the United States
(according to 2014 data), renewable power continues to penetrate into the electric-
ity market [21]. This trend has motivated the development of many unit commit-
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ment models that can mitigate uncertainty of renewable supplies. In this chapter, we
present a stochastic unit commitment model that determines on-off schedules of the
generating units and operation levels, with the objective of cost minimization under
uncertain renewable generation. We focus on a day-ahead hourly scheduling of fast
and slow generators subject to real-time wind power supply for a 24-hour planning
horizon. In this chapter, we use the stochastic unit commitment formulation pre-
sented in [14]. We use this model to motivate different algorithmic approaches to
solve these types of problems.

We let T := {1, . . . ,T} be the set of time periods in the planning horizon. We
assume that we have a set W of wind power generators and that the generation
level Wjwt from each generator w ∈W is given for each scenario j ∈S and at time
t ∈ T . We also assume that the set S := {1, . . . ,S} has only a finite number of
scenarios with corresponding probabilities {π1, . . . ,πS}. We let G be the set of gen-
erators considered in the model, and we let Gs,G f be the set of slow generators and
fast generators, respectively. We assume that the slow generators are required to be
scheduled a day ahead whereas the fast generators can start on demand (i.e., in real-
time). Each generator g∈ G starts up, operates, and shuts down at the corresponding
costs Cup

g ,Cfx
g , and Cdn

g , respectively. We denote the binary decision variables indi-
cating whether generator g is on or off for each scenario j at time t as x jgt . We
also denote the binary decision variables indicating whether generator g starts up
(or shuts down) for each scenario j at time t by u jgt (or v jgt , respectively).

Logical constraints for commitment, startup and shutdown decisions

The logical relations between commitment, startup, and shutdown decisions are
given respectively by

1− x jg(t−1) ≥ u jgt , ∀ j ∈S ,g ∈ G , t ∈T , (1)

x jg(t−1) ≥ v jgt , ∀ j ∈S ,g ∈ G , t ∈T , (2)

x jgt − x jg(t−1) = u jgt − v jgt , ∀ j ∈S ,g ∈ G , t ∈T , (3)

where the initial status x jg0 of generator g is given for each scenario j ∈S . Each
generator g has minimum uptime and downtime denoted by UTg and DTg, respec-
tively. Hence, we have the following constraints:

x jgt ≥
t

∑
τ=max{1,t−UTg+1}

u jgτ , ∀ j ∈S ,g ∈ G , t ∈T , (4)

1− x jgt ≥
t

∑
τ=max{1,t−DTg+1}

u jgτ , ∀ j ∈S ,g ∈ G , t ∈T , (5)

with the initial operating status
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x jgt = 1, ∀ j ∈S ,g ∈ G , t ∈ {1, . . . ,UT init
g }, (6)

x jgt = 0, ∀ j ∈S ,g ∈ G , t ∈ {1, . . . ,DT init
g }, (7)

where UT init
g and DT init

g are the initial uptime and downtime of generator g ∈ G ,
respectively. The decisions for each slow generator should be the same for all the
scenarios, because the slow generators cannot be adjusted in realtime. This is called
the nonanticipativity constraint and can be expressed mathematically as

xigt = x jgt , uigt = u jgt , vigt = v jgt , ∀i, j ∈S ,g ∈ Gs, t ∈T . (8)

Generation limits, spinning reserve requirements, and ramping constraints

The model also determines the production levels p jgt and spinning reserve amounts
s jgt of generator g at time t for each scenario j. The limitations of the generation
level are

Pmin
g x jgt ≤ p jgt ≤ Pmax

g x jgt − s jgt , ∀ j ∈S ,g ∈ G , t ∈T , (9)

where Pmin
g and Pmax

g are the minimal and maximal levels of generator g ∈ G , re-
spectively. The generation rates are physically constrained according to

−RDg ≤ p jgt − p jg(t−1) ≤ RUg− s jgt , ∀ j ∈S ,g ∈ G , t ∈T , (10)

s jgt ≤ RCgx jgt , ∀ j ∈S ,g ∈ G , t ∈T , (11)

where RDg and RUg are the minimal and maximal rates of generation change for
each generator g ∈ G , respectively; RCg is the ramping capacity of generator g; and
the initial production level p jg0 of generator g is given for each scenario s. The con-
straints (10)-(11) are called ramping constraints. The spinning reserve requirement
SRt is given by

∑
g∈G

s jgt ≥ SRt , ∀ j ∈S , t ∈T . (12)

Flow balance and transmission line capacity constraints

The system balance between the net generation level and load is given by

∑
g∈G

p jgt = ∑
n∈N

D jnt − ∑
w∈W

Wjwt , ∀ j ∈S , t ∈T , (13)

where D jnt is the demand load of bus n at time t for each scenario j. We let L
be the set of transmission lines where each line l ∈ L has minimal and maximal
capacities denoted by Fmin

l and Fmax
l , respectively. We let Lln be the load shift factor

of transmission line l with respect to bus n for each l ∈L and n ∈N . The load
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shift factor is also known as the power transfer distribution factor that represents the
change of power flow on line l with respect to the change in injection at bus n. The
transmission line capacity is constrained as follows:

Fmin
l ≤ ∑

g∈G
Lln(g)p jgt − ∑

n∈N
LlnD jnt + ∑

w∈W
Lln(w)Wjwt ≤ Fmax

l ,

∀ j ∈S , l ∈L , t ∈T , (14)

where n(g) and n(w) are respectively the indices of buses where generator g and
wind farm w are located.

Piecewise linear objective function

The objective function is the expected cost of operating generators and electric-
ity production. While the cost functions of commitment, startup, and shutdown are
linear, the production cost is a nonlinear function that is often approximated by a
piecewise linear function. We let K be the set of linear segments to approximate
the cost function. We let q jgkt be the production level of generator g at cost segment
k at time t for a given scenario j, and we let Qmax

gk be the maximum production limit
of generator g at cost Cmar

gk of segment k. The piecewise linear approximation of the
cost function is achieved by adding the following constraints:

q jgkt ≤ Qmax
gk x jgt , ∀ j ∈S ,g ∈ G ,k ∈K , t ∈T , (15)

p jgt = Pmin
g x jgt + ∑

k∈K
q jgkt , ∀ j ∈S ,g ∈ G , t ∈T . (16)

Stochastic mixed-integer programming formulation

The stochastic unit commitment model is formulated as follows.

min ∑
j∈S

∑
t∈T

∑
g∈G

π j

(
Cfx

g x jgt +Cup
g u jgt +Cdn

g v jgt + ∑
k∈K

Cmar
gk q jgkt

)
(17a)

s.t. (1)− (16) (17b)
x jgt ∈ {0,1}, 0≤ u jgt ,v jgt ≤ 1, p jgt ,q jgkt ,s jgt ≥ 0,

∀ j ∈S ,g ∈ G ,k ∈K , t ∈T . (17c)

This is a two-stage stochastic mixed-integer program (SMIP) where the first-stage
variables represent commitment, startup, and shutdown decisions of slow generators
and the second-stage variables represent all the other decisions including those of
fast generators for each scenario j ∈S . The objective function (17a) is the expected
cost of operating generators and producing electricity during the planning horizon
T . Note that the integrality restriction is implicitly imposed on variables u jgt and
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v jgt for any given binary value x jgt . By explicitly relaxing the integrality on u jgt and
v jgt the MIP solver can generate tight, valid cutting planes and primal solutions by
heuristic procedures.

Technical challenges of SMIP

SMIP is a challenging problem because the dimensionality increases with the num-
ber of scenarios and because the objective function is nonconvex and discontinuous
in the first-stage variables. The dimensionality of SMIP makes linear algebra oper-
ations in simplex procedures expensive. Moreover, even the linear programming re-
laxation of the problem might not fit in memory. Consequently, off-the-shelf branch-
and-cut solvers are limited to problems with few scenarios. In order to address this
issue, different decomposition methods have been proposed. Benders decomposition
(also known as the L-shaped method) has been the most popular method for solving
SMIPs, but this algorithm does not have convergence guarantees when integer vari-
ables are present in the second stage (e.g., startup and shutdown of fast generators).
Therefore, other approaches are required. These include specialized branch-and-
bound techniques using tender variables [3] and various convexification techniques
(e.g., Gomory cuts [9, 24], mixed-integer rounding cuts [13], and disjunctive cuts
[19, 20]). However, they are limited to certain problem classes. Consequently, we
are interested in decomposition methods that can solve SMIP to optimality or at least
provide good upper and/or lower bounds. This can be achieved by using a variety
of methods such as dual decomposition and progressive hedging. Dual decomposi-
tion is implemented in the open-source package DSP [14], and progressive hedging
is implemented in PySP [23]. DSP provides a Julia-based modeling interface
(i.e., StochJuMP [12]), and PySP provides a Python-based modeling interface.
The ddsip package [17] also implements a dual decomposition method but does
not support model specification through a standard file format (i.e., SMPS [5]) and
algebraic modeling languages.

2 Scenario Decomposition

In this section, we present scenario decomposition methods for the stochastic unit
commitment model presented in Section 1. For simplicity, we write this model in
the general form

z = min
x j ,y j

∑
j∈S

π j
(
cT x j +qT

j y j
)

(18a)

s.t. ∑
j∈S

H jx j = 0, (λ ) (18b)

(x j,y j) ∈ G j, ∀ j ∈S , (18c)
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where x is the first-stage decision vector and y j is the second-stage decision vector
for each scenario j ∈S . Equation (18b) represents the nonanticipativity constraints
(8) with a suitable matrix H j ∈ RS·n1×n1 , and λ ∈ RS·n1 is the corresponding dual
variable. In equation (18c), the set G j of feasible solutions is defined by all the
constraints except the nonanticipativity constraints.

2.1 Dual Decomposition

Dual decomposition was first proposed in [6]. This method applies a Lagrangian re-
laxation of the nonanticipativity constraints (8) to obtain the Lagrangian dual func-
tion

D(λ ) := min
x j ,y j

{
∑
j∈S

L j(x j,y j,λ ) : (x j,y j) ∈ G j, ∀ j ∈S

}
, (19)

where

L j(x j,y j,λ ) := π j
(
cT x j +qT

j y j
)
+λ

T (H jx j). (20)

For fixed λ , the Lagrangian dual function can be decomposed as

D(λ ) = ∑
j∈S

D j(λ ), (21)

where

D j(λ ) := min
x j ,y j

{
L j(x j,y j,λ ) : (x j,y j) ∈ G j

}
. (22)

We thus seek to obtain the best lower bound for (18) by solving the Lagrangian
dual problem:

zLD := max
λ

∑
j∈S

D j(λ ). (23)

Proposition 1 is an important property of the Lagrangian relaxation, which shows
the tightness of the lower bound zLD [10].

Proposition 1. The optimal value zLD of the Lagrangian dual problem (23) is equal
to the optimal value of the following linear program,

min
x j ,y j

{
∑
j∈S

π j
(
cT x j +qT

j y j
)

: ∑
j∈S

H jx j = 0, (x j,y j) ∈ conv(G j), ∀ j ∈S

}
, (24)

where conv(G j) denotes the convex hull of G j. Moreover, zLD ≥ zLP holds, where
zLP is the optimal value of the linear programming relaxation of (18).
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2.1.1 Subgradient Method

Subgradient methods have been widely used in nonsmooth optimization. We let λ k

be the dual variable at iteration k ≥ 0, and we let xk
s be an optimal solution of (22)

for given λ k. The dual variable is updated as

λ
k+1 = λ

k−αk ∑
j∈S

H jxk
j, (25)

where αk ∈ (0,1] is the step size. This method updates the duals by using a sub-
gradient of D(λ ) at λ k, denoted by ∑ j∈S H jxk

j . Different step-size rules have been
studied for subgradient methods [4]. For example, in [7] the step size αk is given by

αk := βk
zUB−D(λ k)∥∥∥∑ j∈S H jxk

j

∥∥∥2

2

, (26)

where zUB is the objective value of the best-known feasible solution to (18) up to
iteration k and βk is a user-defined positive scalar. The subgradient method is sum-
marized in Algorithm 1.

Algorithm 1 Dual Decomposition Based on Subgradient Method (DD-Sub)
1: Set k← 0,zLB←−∞,zUB← ∞ and γ ← 0.
2: loop
3: SOLVE (22) to obtain D j(λ

k) and (xk
j ,y

k
j) for given λ k and for all j ∈S

4: if D(λ k)> zLB then
5: zLB← D(λ k)
6: else
7: γ ← γ +1
8: if γ = γmax then
9: βk← 0.5βk and γ ← 0

10: end if
11: end if
12: UPDATE zUB for given xk

s
13: k← k+1
14: end loop

Algorithm 1 is initialized with user-defined parameters λ 0,γmax, and β0 and re-
duces βk by half when the best lower bound zLB is not improved for the last γmax

iterations (lines 8-10). The best upper bound zUB may be obtained by solving (18)
for fixed xk

s (line 12). An important limitation of the subgradient method is that finite
termination cannot be proved [7].
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2.1.2 Cutting-Plane Method

The cutting-plane method is an outer approximation scheme that solves the La-
grangian dual problem by iteratively adding linear inequalities. The outer approxi-
mation of (23) at iteration k is given by the Lagrangian master problem:

mk := max
θ j ,λ

∑
j∈S

θ j (27a)

s.t. θ j ≤ D j(λ
l)+

(
H jxl

j

)T
(λ −λ

l), ∀ j ∈S , l = 0,1, . . . ,k. (27b)

The dual variable λ k+1 is obtained by solving the approximation (27) at iteration k.
We define the primal-dual solution of the Lagrangian master problem as the triplet
(θ ,λ ,π). Here, θ := (θ1, ...,θS) and π := (π0

1 , ...,π
k
1 , ...,π

0
S , ...,π

k
S), where π l

s are
the dual variables of (27b). The master problem (27) exhibits a dual block-angular
structure that allows for parallelism in solving the master by using an interior-point
solver [16]. The method is summarized in Algorithm 2.

Algorithm 2 Dual Decomposition Based on Cutting-Plane Method
1: k← 0 and λ 0← 0
2: SOLVE (22) to obtain D j(λ

k) and (xk
j ,y

k
j) for given λ k and for each j ∈S

3: zLB← D(λ k).
4: repeat
5: ADD (27b) for given D(λ k) and xk

j

6: SOLVE (27) to obtain mk and (θ k+1,λ k+1)
7: SOLVE (22) to obtain D j(λ

k+1) and (xk+1
j ,yk+1

j ) for given λ k+1 and for all j ∈S

8: UPDATE zLB←max{zLB,D(λ k+1)}.
9: k← k+1

10: until mk−1 ≤ D(λ k)

The function D j(λ ) is piecewise linear concave in λ supported by the linear in-
equalities (27b). Assuming that the master problem (27) and the subproblem (22)
can be solved to optimality, Algorithm 2 terminates with an optimal solution of (23)
after a finite number of steps because the number of linear inequalities required to
approximate D(λ ) is finite. This gives the cutting-plame method a natural termi-
nation criterion (i.e., mk−1 ≤ D(λ k)). In other words, this criterion indicates that
mk−1 matches the Lagrangian dual function D(λ k) and thus the maximum of the
Lagrangian master problem matches the maximum of the Lagrangian dual problem.

2.1.3 Variants of the Cutting-Plane Method

The cutting-plane method is inherently unstable, and hence the solutions of the mas-
ter problem (27) oscillate significantly when the Lagrangian dual (23) is not well
approximated at the beginning of the iterations. Moreover, the solution also suffers
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from degeneracy. Several variants of the cutting-plane method have been proposed
to overcome these issues. Here we present two variants.

Interior-Point Cutting-Plane Method

The interior-point method (IPM) with early termination criteria was proposed in
[14]. The IPM solves the master problem (27) suboptimally to find stronger cuts
from interior feasible solutions and to avoid degeneracy.

The IPM checks the termination criteria in the following order:

1. ∑ j∈S θ k
j ≥ zUB

2. gk(θ
k,λ k,µk)< εk

IPM

Here, gk(θ
k,λ k,µk) is the relative duality gap of the primal-dual feasible solution

(θ k,λ k,µk) of the master (27) at iteration k. The tolerance εk
IPM can be relaxed when

the duality gap of the dual decomposition method is large. It is updated as follows:

Algorithm 3 Dual Decomposition Based on Interior-Point Cutting-Plane Method
(IPCPM)
1: k← 0,λ 0← 0 and zUB← ∞

2: SOLVE (22) to obtain D j(λ
k) and (xk

j ,y
k
j) for given λ k and for each j ∈S

3: ADD cutting-planes (27b) to the master (27) for given D(λ k) and xk
j

4: zLB← D(λ k).
5: loop
6: SOLVE the master (27) by the IPM to obtain (θ k+1,λ k+1)
7: SOLVE (22) to obtain D j(λ

k+1) and (xk+1
j ,yk+1

j ) for given λ k+1 and for each j ∈S

8: if (θ k+1,λ k+1) is obtained from the first termination criterion then
9: if θ

k+1
j ≤ D j(λ

k+1) for all j ∈S then
10: STOP
11: else
12: ADD cutting-planes (27b) to the master (27) for given D(λ k+1) and xk+1

s
13: end if
14: else if (θ k+1,λ k+1) is obtained from the second termination criterion then
15: if θ

k+1
j ≤ D j(λ

k+1) for all j ∈S then
16: if εk

IPM > εOpt then
17: UPDATE ε

k+1
IPM from (28)

18: else
19: STOP
20: end if
21: else
22: ADD cutting-planes (27b) to the master (27) for given D(λ k+1) and xk+1

j
23: end if
24: end if
25: zLB←max{zLB,D(λ k)}.
26: k← k+1
27: end loop
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ε
k
IPM := min

{
ε

max
IPM,

gk−1(θ̃
k−1, π̃k−1)

δ
+

m̃k−1−∑ j∈S D j(λ̃
k−1)

1+ |m̃k−1|

}
, (28)

where m̃k−1 := ∑ j∈S θ̃
k−1
j and δ > 1 is the degree of optimality [11]. The interior-

point cutting-plane method is summarized in Algorithm 3. Algorithm 3 terminates
after a finite number of iterations with an optimal solution of the Lagrangian dual
problem (23) (see Theorem 2 in [14] for a proof).

Bundle Method

The bundle method is a stabilized cutting-plane method where a quadratic sta-
bilizing term is added to the objective function of the master (27). As a result, the
method solves the master problem

max
θ j ,λ

∑
j∈S

θ j +
1

2τ
‖λ −λ

+‖2 (29a)

s.t. θ j ≤ D j(λ
l)+

(
H jxl

j

)T
(λ −λ

l), ∀ j ∈S , l = 0,1, . . . ,k, (29b)

where λ+ is a stability center and τ > 0 is a parameter that defines the stabilization
effect [15]. Note that the bundle method becomes equivalent to the cutting-plane
method for a large τ and the subgradient method for a small τ . A bundle method
for dual decomposition is summarized in Algorithm 4 as presented in [16], where

Algorithm 4 Dual Decomposition Based on Bundle Method
1: Choose initial κ ∈ (0,1) and t > 0, k← 0,λ+← 0 and λ 0← 0
2: SOLVE (22) to obtain D j(λ

k) and (xk
j ,y

k
j) for given λ k and for each j ∈S

3: zLB← D(λ k)
4: loop
5: ADD cuts (29b) to the master (29) for given D(λ k) and xk

j

6: SOLVE the master (29) to obtain (θ k+1,λ k+1)
7: ν ← ∑ j∈S θ

k+1
j − zLB

8: if ν < ε(1+ |zLB|) then
9: STOP

10: end if
11: k← k+1
12: SOLVE (22) to obtain D j(λ

k) and (xk
j ,y

k
j) for given λ k and for each j ∈S .

13: u← 2t
[
1−
(
D(λ k)− zLB

)
/ν
]

14: UPDATE t←min
{

max
{

u, t/10,10−4
}
,10t

}
15: if D(λ k)−D(λ+)> κν then
16: UPDATE zLB← D(λ k)
17: UPDATE λ+← λ k

18: end if
19: end loop
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the dual of the master problem (27) is solved. Algorithm 4 is convergent in the limit
[16].

We also note that stabilization of the master solution can be achieved by using a
trust-region constraint (as opposed to the quadratic term used in the bundle method),
as is done in [14]. The trust region avoids the need of tuning the parameter τ .

2.2 Progressive Hedging

Progressive hedging is a scenario decomposition framework that is partly motivated
by the augmented Lagrangian dual of (18)

Lr(x̂,λ ) = ∑
j∈S

π j
(
cT x j +qT

j y j
)
+ ∑

j∈S
λ

T (H jx j)+0.5ρ‖ ∑
j∈S

H jx j‖2

= ∑
j∈S

π j
(
cT x j +qT

j y j
)
+ ∑

j∈S
ω

T
j x j +0.5ρ‖ ∑

j∈S
π jx j− x̂‖2, (30)

where ω j := λ T H j, and the second equality holds because the nonanticipativity
constraints ∑ j∈S H jx j = 0 is equivalent to ∑ j∈S π jx j−E[x] = 0 [18]. An impor-
tant observation is that the term ‖∑ j∈S π jx j− x̂‖2 of (30) cannot be decomposed
in scenarios. To achieve decomposition, the progressive hedging algorithm solves
subproblems of the form

Pj(x̂,ω,ρ) := min
{

π j
(
cT x j +qT

j y j
)
+ω

T x j +0.5‖ρT (x j− x̂)‖2 : (x j,y j) ∈ G j
}
,

(31)

where the vector x̂ is the expected value of x from the previous iteration, ω ∈ Rn1

is a price vector and ρ > 0 is a perturbation vector. For computational efficiency,
the quadratic proximal term of (31) is often approximated by using piecewise linear
functions [23]. We note that the progressive hedging subproblem (31) has struc-
tural connections with the augmented Lagrangian (30). Unlike the (augmented) La-
grangian relaxation, however, the progressive hedging method seeks to find a feasi-
ble solution (i.e., an upper bound). The method is summarized in Algorithm 5.

The choice of the perturbation vector ρ can significantly affect algorithmic per-
formance. A small value of ρ may require many iterations to achieve changes in
the first-stage variables, whereas a large value may lead to a suboptimal solution.
Different strategies for computing ρ are discussed in [22]. We also note that Algo-
rithm 5 cannot be guaranteed to terminate in a finite number of steps, but it often
provides good-quality solutions.
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Algorithm 5 Progressive Hedging (PH)
1: k← 0 and ω0

j ← 0 for each j ∈S

2: SOLVE Pj(0,0,0) to obtain (xk
j ,y

k
j) for all j ∈S

3: zLB← ∑ j∈S Pj(0,0,0).
4: k← k+1
5: repeat
6: UPDATE x̂k−1← ∑ j∈S π jxk−1

j

7: UPDATE ωk
j ← ωk

j +ρ

(
xk−1

j − x̂k−1
j

)
for each j ∈S .

8: SOLVE Pj(x̂k−1
j ,ωk

j ,ρ) to obtain (xk,xk) for each j ∈S .
9: k← k+1

10: until xk
j are equal for all j ∈S

2.3 Incorporating Benders-type Cutting-Plane Procedure

One can combine dual decomposition and Benders techniques. For instance, a
Benders-type cutting-plane procedure has been proposed for the Lagrangian sub-
problems (22) in [14]. The aim of the cutting-plane procedure is to eliminate in-
feasible first-stage solutions and to tighten the Lagrangian subproblems. The com-
putational experiments in [14] show significant improvement in the quality of the
bounds, number of iterations, and solution time. For simplicity, we use the general
definition of set G j := {(x j,y j) : Ax j = b, Tjx j +Wjy j = h j} for each j ∈S .

Feasibility Cuts

Without loss of generality, we let (x̂1, ŷ1) ∈ G1 be the feasible subproblem solution
that is infeasible to the original problem (18). This situation can occur because the
stochastic UC problem might not have relatively complete recourse. For j ∈S , we
solve the linear program

max
µ

{
µ

T (h j−Tj x̂1) : µ
TWj ≤ 0, |µ| ≤ 1

}
, (32)

where the absolute value | · | is taken componentwise, until µT
j (h j−Tjx) > 0 for

some j. For some j such that µT
j (h j−Tjx)> 0, we add

µ
T
j (h j−Tjx)≤ 0 (33)

to the constraint set of G j for all j ∈S .
This cut eliminates a candidate first-stage solution x̂1 that does not have a fea-

sible recourse for the subproblem. We highlight, however, that infeasibility can be
guaranteed to be eliminated only if it is detected at the root node of the branch-and-
bound tree of the subproblem (22).
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Optimality Cuts

We assume that (x̂1, ŷ1) ∈ G1 is a feasible subproblem solution that is also feasible
with respect to the original problem (18). For j ∈S , we solve the linear program

max
π

{
π

T (h j−Tj x̂1) : π
TWj ≤ q j

}
. (34)

The optimality cut is generated by

cT x+ ∑
j∈S

π
T
j (h j−Tjx)≤ zUB (35)

for a given best upper bound zUB and added to the constraint set of G j for all j ∈S .
We note that the optimality cut (35) is parameterized by the best-known upper

bound zUB and thus can be tightened as better upper bounds are obtained. In other
words, the optimality cut seeks to eliminate first-stage solutions that go above a
known upper bound.

Procedure 1 summarizes the Benders-type cutting-plane procedure for solving
the Lagrangian subproblems (22) by adding the valid inequalities (33) and (35). The
procedure can also be applied to other scenario decomposition methods. Moreover,
the procedure terminates in a finite number of steps (see Theorem 1 in [14]).

Procedure 1 Cutting-Plane Procedure for Lagrangian Subproblems (CPSub)
Require: λ k

1: for all s ∈S do
2: repeat
3: SOLVE subproblem (22) to obtain D j(λ

k) and (xk
j ,y

k
j) for λ k

4: isFeasible← true
5: for all j′ ∈S \{ j} do
6: SOLVE feasibility cut generator (32) to obtain µ j′ for xk

j

7: if µT
j′ (h j′ −Tj′xk

j)> 0 then
8: ADD feasibility cut (33) to all the subproblems (22)
9: isFeasible← f alse

10: end if
11: end for
12: until isFeasible = true
13: UPDATE zUB by solving (18) for fixed xk

j

14: GENERATE optimality cut (35) by solving (34) for xk
j and for all j ∈S

15: ADD optimality cut (35) to all the subproblems (22)
16: end for
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3 Numerical Example

We present a numerical example of the stochastic unit commitment model. We also
illustrate how to solve the model by using open-source software packages. In this
model, thermal power generators are scheduled over a day. The schedules are subject
to uncertainty in wind power generation. We use a modified IEEE 118-bus system
with 54 generators, 118 buses, and 186 transmission lines provided in [14]. We
assume that 17 of the 54 generators are allowed to start on demand (second stage)
whereas the other generators should be scheduled in advance (first stage). We also
consider 3 identical wind farms, each consisting of 120 wind turbines. The demand
load is 3,095 MW on average, with a peak of 3,733 MW. The wind power generation
level is 494 MW on average, with a peak of 916 MW for the 64 scenarios generated.
Figure 1 shows the 64 scenarios (grey lines) of wind power generation and the mean
levels (red lines). We used real wind-speed data predicted from the observations of
31 weather stations in the state of Illinois.
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Fig. 1 Wind power generation scenarios for wind farms considered in the stochastic unit commit-
ment model.

Table 1 presents the size of the stochastic unit commitment instances with 4, 8,
16, 32, and 64 scenarios. The first stage has 10,727 constraints and 2,592 variables
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Table 1 Characteristics of stochastic unit commitment instances
# Scenarios # Rows # Columns # Integers

4 120,015 38,880 2,592
8 229,303 75,168 4,320

16 447,879 147,744 7,776
32 885,031 292,896 14,688
64 1,759,335 583,200 28,512

including 864 integer variables, and the second stage has 27,322 constraints and
9,072 variables including 432 integer variables.

We also solved the extensive form of the problems by using SCIP [2] (ver-
sion 3.1.1) with a 6-hour time limit and a 0.01% optimality gap tolerance. Table 2
presents the computational results for the extensive form. None of the instances ex-
cept the 4-scenario instance can reach the 0.01% optimality gap within the 6-hour
limit. Moreover, the 64-scenario instance finds a poor lower bound without an upper
bound.

To avoid scalability issues, we solved the stochastic UC problems by using the
scenario decomposition methods presented in Section 2. Specifically, we used the
DSP package [14] (version 0.2.0) and PySP [23] in the Pyomo package (version
4.0.9682) for the dual decomposition and progressive hedging methods, respec-
tively. DSP and PySP solve the subproblems with 0.01% of optimality gap by us-
ing SCIP (version 3.1.1) and CBC [8] (version 2.8), respectively. We could not use
SCIP for PySP because the interface of SCIP for PySP does not allow us to set
the optimality gap tolerance. All computations were run on Blues, a 310-node com-
puting cluster at Argonne National Laboratory. Each node on the Blues cluster has
two 8-core 2.6 GHz Xeon processors and 64 GB of RAM.

Table 2 Numerical results for the extensive form of the stochastic unit commitment problems

# Scenarios Branch-and-Cut Nodes Upper Bound Lower Bound Gap (%) Time (sec.)
4 88831 907035.3 906089.9 0.01 6632
8 58235 904068.1 903567.8 0.05 > 21600

16 3505 900806.1 900200.3 0.07 > 21600
32 9 907536.0 901759.8 0.64 > 21600
64 1 ∞ 33605.4 ∞ > 21600

3.1 Lower and Upper Bounds from Dual Decomposition

We first solved the problems using the dual decomposition method implemented in
the DSP solver. We used the interior-point cutting-plane method (IPCPM) for solv-
ing the master problem (27). We also used the Benders-type cutting-plane procedure
(CPSub). DSP is capable of solving a problem in parallel with up to S2 number of
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computing cores (i.e., up to 4,096 cores for the 64-scenario instance). However, in
our numerical example, we used only up to 2,048 cores on the Blues cluster.

Table 3 Numerical results for stochastic unit commitment problem from DSP.

# Scenarios Iterations Upper Bound Lower Bound Gap (%) Time/Iter. (sec.) Total Time (sec.)
4 1 907046.1 906979.1 < 0.01 551 551
8 1 904006.6 903953.5 < 0.01 667 667

16 1 900706.3 900650.7 < 0.01 764 764
32 19 903227.7 903149.9 < 0.01 390 7424
64 16 895118.0 895044.6 < 0.01 895 14320

Table 3 shows that upper and lower bounds are obtained with < 0.01% optimality
gap for all the problem instances. Moreover, the DSP solutions terminate after the
first iteration for the 4-, 8- and 16-scenario instances because the CPSub procedure
excluded infeasible first-stage solutions and tightened the scenario subproblems.
We note that the solution time per iteration does not increase with the number of
scenarios because of parallelization of DSP.

We present results for the different variants of dual decomposition discussed in
Section 2. We compare: the subgradient method (DDSub), IPCPM without CPSub
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Fig. 2 Upper bounds and lower bounds obtained with DSP with and without Procedure 1 and with
the subgradient method.
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(IPCPM), and IPCPM with CPSub (DSP). Figure 2 shows the best upper bound
and the best lower bound obtained at each iteration. As can be seen, DSP obtains
upper and lower bounds with < 0.01% duality gap at the first iteration and achieved
termination, whereas IPCPM and DDSub are not able to find upper bounds for the
first 53 iterations and the first 47 iterations, respectively. The results clearly indicate
that the problem does not have relatively complete recourse. Moreover, DSP finds
tighter lower bounds than do DDSub and IPCPM because of the ability to tighten the
subproblems by Procedure 1. The figure also shows that IPCPM finds better lower
and upper bounds than does DDSub.

3.2 Upper Bounds from Progressive Hedging

We now present results for the progressive hedging method implemented in the
PySP package. The subproblem solutions are parallelized by using the Pyro pack-
age [1] that provides capabilities for distributed computing. In our numerical exam-
ple, we set the initial perturbation vector ρ := 1.0 and later adjust it in proportion to
the objective function coefficient [23]. We also set the --enable-ww-extension
option, which enables additional heuristics for finding feasible solutions [22]. We
note that one could tune the parameters and devise other heuristics.

Table 4 presents the results from solving the stochastic UC problems by the pro-
gressive hedging method in PySP. PySP finds tight upper bounds for the 4-, 8, 16-,
and 32-scenario problems. For the 64-scenario problem, however, PySP cannot find
an upper bound after 53 iterations and 6 hours of solution time. We also note that
parallelization keeps the time per iteration constant as we increase the number of
scenarios. The number of iterations, however, also tends to increase as we increase
the number of scenarios, because the number of nonanticipativity constraints in-
creases.

Table 4 Numerical results for stochastic unit commitment problem from PySP.

# Scenarios Iterations Upper Bound Time/Iter. (sec.) Total Time (sec.)
4 5 907042.5 245 1224
8 13 904041.2 203 2645

16 26 900712.1 240 6228
32 20 903355.7 603 12069
64 53 ∞ 407 > 21600

4 Summary

We have presented a stochastic unit commitment model, which can be formulated as
a two-stage stochastic mixed-integer programming problem. The first stage sched-
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ules slow generation units a day ahead under uncertain wind power production The
second stage dispatches electricity production in order to meet demand load, while
scheduling fast generation units. The problem is challenging because it is a large-
scale mixed-integer programming problem. Moreover, standard Benders decompo-
sition cannot be applied because the recourse function is nonconvex and discontinu-
ous on the first-stage variables. As a result, we have presented scenario decomposi-
tion methods, which split the original problem into the scenario number of subprob-
lems and solve the smaller subproblems. This decomposability naturally leads to
parallel algorithms capable of running on high-performance computing systems. We
have presented dual decomposition and progressive hedging with various enhance-
ment techniques that incorporate Benders-type cuts in the scenario decomposition
framework. In the numerical example, we used an IEEE 118-bus system with 64 sce-
narios of wind power productions. We solved the stochastic unit commitment prob-
lem using open-source software packages, DSP and PySP, that implement parallel
dual decomposition and progressive hedging, respectively. The numerical results
show that state-of-the-art solution methods are able to solve a large-scale stochas-
tic unit commitment problem. However, more research is needed to scale up these
methods and address a large number of scenarios.
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